Ha, it's English time, let's spend a few minutes to learn a simple machine learning example in a simple passage.
Introduction
- What is machine learning? you design methods for machine to learn itself and improve itself.
- By leading into the machine learning methods, this passage introduced three methods to get optimal k and b of linear regression(y = k*x + b).
- The data used is produced by ourselves.
Self-sufficientDataGeneration
import pandas as pdimport matplotlib.pyplot as pltimport numpy as npimport random#produce dataage_with_fares = pd.DataFrame({"Fare":[263.0, 247.5208, 146.5208, 153.4625, 135.6333, 247.5208, 164.8667, 134.5, 135.6333, 153.4625, 134.5, 263.0, 211.5, 263.0, 151.55, 153.4625, 227.525, 211.3375, 211.3375], "Age":[23.0, 24.0, 58.0, 58.0, 35.0, 50.0, 31.0, 40.0, 36.0, 38.0, 41.0, 24.0, 27.0, 64.0, 25.0, 40.0, 38.0, 29.0, 43.0]})sub_fare = age_with_fares['Fare']sub_age = age_with_fares['Age']#show our dataplt.scatter(sub_age,sub_fare)plt.show()
def func(age, k, b): return k*age+bdef loss(y,yhat): return np.mean(np.abs(y-yhat))#here we choose only minus methods as the loss, besides, there are mean-square-error(L2) loss and other loss methods
RandomChosenMethod
min_error_rate = float('inf')loop_times = 10000losses = []def step(): return random.random() * 2 - 1# random生成 0~1的随机数;(0,1)*2 -> (0,2); 再减1 -> (-1,1), 随机生成+循环:学习动力来源while loop_times > 0: k_hat = random.random() * 20 - 10 b_hat = random.random() * 20 - 10 estimated_fares = func(sub_age, k_hat, b_hat) error_rate = loss(y=sub_fare, yhat=estimated_fares) if error_rate
show the loss change
plt.plot(range(len(losses)), losses)plt.show()
Explain
- We can see the loss decrease sometimes quickly, sometimes slowly, anyway, it decreases finally.
- One shortcoming of this method: the Random Chosen methods is not so valid as it runs random function tons of time.
- Because even when it comes out a better parameter, it may choose a worse one next time.
- One improved method see next part.
SupervisedDirectionMethod
change_directions = [ (+1, -1),# k increase, b decrease (+1, +1), (-1, -1), (-1, +1)]min_error_rate = float('inf')loop_times = 10000losses = []best_direction = random.choice(change_directions)#定义每次变化(步长)的大小def step(): return random.random()*2-1 #random生成 0~1的随机数;(0,1)*2 -> (0,2); 再减1 -> (-1,1);#但是change_directions已经有加减1(改变方向)的操作,所以去掉 *2-1#但保留*2-1 能增加choisek_hat = random.random() * 20 - 10b_hat = random.random() * 20 - 10best_k, best_b = k_hat, b_hatwhile loop_times > 0: k_delta_direction, b_delta_direction = best_direction or random.choice(change_directions) k_delta = k_delta_direction * step() b_delta = b_delta_direction * step() new_k = best_k + k_delta new_b = best_b + b_delta estimated_fares = func(sub_age, new_k, new_b) error_rate = loss(y=sub_fare, yhat=estimated_fares) #print(error_rate) if error_rate < min_error_rate:#supervisor learning min_error_rate = error_rate best_k, best_b = new_k, new_b best_direction = (k_delta_direction, b_delta_direction) #print(min_error_rate) #print("loop == {}".format(loop_times)) losses.append(min_error_rate) #print("f(age) = {} * age + {}, with error rate: {}".format(best_k, best_b, error_rate)) else: best_irection = random.choice(list(set(change_directions)-{(k_delta_direction, b_delta_direction)})) #新方向不能等于老方向 loop_times -= 1print("f(age) = {} * age + {}, with error rate: {}".format(best_k, best_b, error_rate)) plt.scatter(sub_age, sub_fare)plt.plot(sub_age, func(sub_age, best_k, best_b), c = 'r')plt.show()
show the loss change
plt.plot(range(len(losses)), losses)plt.show()
Explain
- The Supervised Direction method(2nd method) is better than Random Chosen method(1st method).
- The 2nd method introduced supervise mechanism, which is more efficiently in changing parameters k and b.
- But the 2nd method can't optimize the parameters to smaller magnitude.
- Besides, the 2nd method can't find the extreme value, thus can't find the optimal parameters effectively.
GradientDescentMethod
min_error_rate = float('inf')loop_times = 10000losses = []learing_rate = 1e-1change_directions = [ # (k, b) (+1, -1), # k increase, b decrease (+1, +1), (-1, +1), (-1, -1) # k decrease, b decrease]k_hat = random.random() * 20 - 10b_hat = random.random() * 20 - 10best_direction = Nonedef step(): return random.random() * 1direction = random.choice(change_directions)def derivate_k(y, yhat, x): abs_values = [1 if (y_i - yhat_i) > 0 else -1 for y_i, yhat_i in zip(y, yhat)] return np.mean([a * -x_i for a, x_i in zip(abs_values, x)])def derivate_b(y, yhat): abs_values = [1 if (y_i - yhat_i) > 0 else -1 for y_i, yhat_i in zip(y, yhat)] return np.mean([a * -1 for a in abs_values])while loop_times > 0: k_delta = -1 * learing_rate * derivate_k(sub_fare, func(sub_age, k_hat, b_hat), sub_age) b_delta = -1 * learing_rate * derivate_b(sub_fare, func(sub_age, k_hat, b_hat)) k_hat += k_delta b_hat += b_delta estimated_fares = func(sub_age, k_hat, b_hat) error_rate = loss(y=sub_fare, yhat=estimated_fares) #print('loop == {}'.format(loop_times)) #print('f(age) = {} * age {}, with error rate: {}'.format(k_hat, b_hat, error_rate)) losses.append(error_rate) loop_times -= 1print('f(age) = {} * age {}, with error rate: {}'.format(k_hat, b_hat, error_rate))plt.scatter(sub_age, sub_fare)plt.plot(sub_age, func(sub_age, k_hat, b_hat), c = 'r')plt.show()
show the loss change
plt.plot(range(len(losses)), losses)plt.show()
Explain
- To fit the objective function given discrete data, we use the loss function to determine how good the fit is.
- In order to get the minimum loss, it becomes a problem of finding the extremum without constraints.
- Therefore, the method of gradient reduction of the objective function is conceived.
- The gradient is the maximum value in the directional derivative.
- When the gradient approaches 0, we fit the better objective function.
Conclusion
- Machine learning is a process to make the machine learning and improving by methods designed by us.
- Random function usually not so efficient, but when we add supervise mechanism, it becomes efficient.
- Gradient Descent is efficiently to find extreme value and optimal.
Serious question for this article:
Why do you use machine learning methods instead of creating ay = k*x + b
formula? - In some senarios, complicated formula can't meet the reality needs, like irrational elements in economics models.
- When we have enough valid data, we can run regression or classification model by machine learning methods
- We can also evaluate our machine learning model by test data which contributes to the application of the model in our real life
- This is just an example, Okay.